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Abstract 

If electron density distributions of different provenance 
need to be compared, the evaluation of the charge 
contents of peaks in deformation densities is useful 
(besides the usual comparison of density sections). 
Since deformation peaks are often of approximately 
ellipsoidal shape, a procedure is proposed in which a 
rotation ellipsoid is placed in the peak position so that it 
encloses the peak and separates it from the neigh- 
bouring peaks. The charge contents of the peaks are 
calculated by numerical integration where positive; zero 
and negative values of the electron density are treated 
separately. This can be achieved by a minor alteration 
of a standard Fourier program. Numerical results are 
presented for p-dicyanobenzene. The C - C  bond peaks 
contain 0.19-0.26 electrons, and the C - N  bond peak 
about 0.26 electrons. 

General considerations 

When we compared experimental and theoretical 
deformation densities for p-dicyanobenzene (Dr/ick, 
Kutoglu, Scheringer, Dann6hl & Schweig, 1983) we 
found that the experimental bond peak in the C - N  
bond was only half as high as the theoretical one but 
was broader. Integration of the density in the peaks 
revealed that the charge contents were nearly equal. 
Hence, the experimental and theoretical density dis- 
tributions did not differ as much as we had assessed by 
merely comparing the density sections and the peak 
heights. 

The obvious procedure to determine the charge in a 
peak is to calculate a Fourier series and to sum up the 
density values in a region around the peak. With 
standard programs for Fourier synthesis, such as, for 
example, the program of Finger & Prince (1975) and 
the XRAY76 system (Stewart, Machin, Dickinson, 
Ammon, Heck & Flack, 1976), the density is cal- 
culated in a parallelepiped whose edges lie parallel to 
the crystal axes. In most cases, it can hardly be avoided 
that the parallelepiped chosen to enclose the peak also 
contains parts of the neighbouring peaks. By trans- 
formation to Cartesian coordinates, rectangular 
parallelepipeds could be generated which may fit the 
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shape of the peak better; however, the effort needed for 
additional programming is large. Berkovitch-Yellin & 
Leiserowitz (1975) have performed integrations over 
the density in deformation peaks, but they only note 
that 'the net charge in each bond was computed by 
numerical integration'. 

Our approach is based on the observation that peaks 
of deformation densities are frequently of approxi- 
mately ellipsoidal shape. Thus, we place a rotational 
ellipsoid around the peak. The position and shape of the 
ellipsoid are chosen to enclose the peak fully and 
separate it as well as possible from the neighbouring 
peaks. The Fourier synthesis is calculated in a 
parallelepiped (with edges parallel to the crystal axes) 
which encloses the ellipsoid but should not be un- 
necessarily large (if only one peak at a time is treated). 
A method for routinely determining the initial and final 
coordinates of such a parallelepiped is described below. 
When the Fourier summation is performed in the 
parallelepiped the condition is examined if the grid 
point is located inside the ellipsoid; for these grid 
points, the positive, zero and negative values of the 
density are summed up separately. From the grid 
points with positive density, the electronic charge in the 
peak is calculated according to 

V 
Q = Z P(Xl)v,= --~--~--' p(x,). (I) 

i I ¥ ' ~ '  
i 

v i is the volume around the grid point x t and is the same 
for all grid points, v I = v = V / N ,  where V is the volume 
of the unit cell and N is the number of points in the unit 
cell. 

Weiss (1966), Coppens & Hamilton (1968) and 
Coppens, Moss & Hansen (1980) have derived 
expressions for the average density /5 in a parallele- 
piped of any shape and orientation. The position of the 
parallelepiped is given by the coordinates of its centre. 
For a single parallelepiped around the grid point xi, the 
charge in the parallelepiped is thus given exactly by 
Qi =/siVr A corresponding expression for the average 
density/5 in an ellipsoid of any shape and orientation 
was derived by Kurki-Suonio (1959); see also Coppens 
& Hamilton (1968). Thus, there seem to be two 
solutions other than ours. Firstly, in (1)/5(xt) is used 
instead of p(xt) for every subunit v i. Within the peak, 
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more exact values for the charges Ql are then 
calculated. However, at the margin of the peak the 
subunits can also contain negative densities which do 
not belong to the peak and, therefore, the charge Qt 
becomes falsified when /)(xi) values are used. For 
comparison, we have evaluated (1) with p and/)  and 
will discuss the numerical results below. The second 
solution consists of calculating the average density in 
the whole ellipsoid around the peak with Kurki- 
Suonio's (1959) expression. This has the advantage 
that one had to calculate the Fourier synthesis at only 
one grid point (the centre of the ellipsoid). Since, 
however, the peaks never assume the shape of an 
ellipsoid exactly, this approach is not used. (With our 
approach, we choose too large an ellipsoid and then 
exclude the regions of negative density.) 

Details of  programming 

coordinate system is established in the program with a 
third lattice point. The Cartesian coordinates of the 
points A and Z in Fig. 1, and those of the eight vertices 
of a rectangular parallelepiped which enveloped the 
ellipsoid, are calculated. All Cartesian coordinates are 
then transformed into lattice units. The three smallest 
and the three largest coordinates x , y , z  of the eight 
vertices are then chosen to define the parallelepiped in 
which the Fourier synthesis is calculated. The volume 
of the parallelepiped thus obtained is always larger by a 
factor of 6/rt = 1.91 then the volume of the ellipsoid. It 
may further be larger by a factor of at the most 3V/3 
approximately if the enveloping rectangular parallel- 
epiped is located with oblique angles towards the 
crystal axes. 

If there are several peaks to be integrated at one 
time, the calculation of the Fourier series over the 
complete cell may be a reasonable alternative. 

The only essential change in a standard program for 
Fourier synthesis is to add a section for computing 

pi(peak) in the loops over all grid points. Here, one 
has to find out if a grid point x i is located within the 
ellipsoid or not. For this purpose we use the polar 
equation 

r 2 = a 2 / [  1 - cos 2 0(1 - a 2 / b 2 ) ]  (2) 

(Rottmann, 1960), where 2a is the rotation axis of the 
ellipsoid. Equation (2) is valid for all ratios of a / b .  With 
the distances and angles which are defined in Fig. 1, we 
have cos ~ = (S 2 -t- a 2 - -  t2)/(2aS). Since cos 2 0 = 
1 - cosE~p for ~ =  9 0 -  Band for ~ =  90 + tg, we 
obtain for all points P in space 

2] r 2 = a (1  - a V b  2) + a V b  (3) 
4 a  2 s 2 • 

In addition to the standard parameters of the Fourier 
program, the coordinates of the points A and Z (in 
lattice units) and the half axes of the ellipsoids, a and b 
( in A) are read in. In the loop over the grid points, s 2, t 2 
a n d  r 2 are computed, and the condition s: < r 2 is 
examined. If it holds, the density of the grid point is 
summed; this is done separately for positive, zero and 
negative values of the density. As a control, the volume 
of the ellipsoid is calculated according to V(ellipsoid) 
= 4 z c a b 2 / 3 ,  and from the number M of 8rid points 
found in the ellipsoid according to l/(ellipsoid) 
= My. 

In order to determine routinely the initial and final 
coordinates of a parallelepiped of practical size in 
which the Fourier synthesis is to be calculated, we have 
written a special program. The user has to specify two 
points in the unit cell (as a rule atomic positions) which 
mark the line of the rotation axis. With reference to 
these two points, the exact position and shape (half 
axis) of the ellipsoid has to be specified. A Cartesian 

Application 

With our modified Fourier program we have cal- 
culated the charges in the peaks of the deformation 
density of p-dicyanobenzene (Dr/ick e t  a l . ,  1983). To 
test the procedure we used ellipsoids of different sizes, 
between 2 and 6 A 3. With the X - X map, we found for 
the C--C bond peaks in the ring charges of 0-19-0-27e 
(variation for the three independent peaks and differ- 
ent volumes), and for the C - H  bonds 0.19-0- 23e. For 
the C - N  triple bond, we found 0-253e for an ellipsoid 
volume of 2-14A 3, and 0.289e for a volume of 
5.41 A 3. The dynamic deformation density calculated 
from a charge-cloud model has charges of the same 
order (mostly a little smaller). With the static de- 
formation density of the same model, the charges are 
15-30% larger because the peaks are higher but not 
correspondingly reduced in width. Furthermore, the 
charges cannot be determined unequivocally because 
there is some overlap of the peaks in our deformation 
densities. Our values for the peak charges are in good 
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Fig. 1. Definitions referring to the ellipsoid; axis of rotation = A C, 

a = A Z ,  b = B Z ,  s = P Z ,  t = PA,  r - -  R Z .  
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agreement with those found by Berkovitch-Yellin & 
Leiserowitz (1975, 1977). 

For two peaks, we have calculated the charge with 
several grids and also with/) instead of p. For the C - N  
peak ofp-dicyanobenzene (X - X map), the results are 
given in Table 1. We may draw the following 
conclusions. Even with a coarse grid of only 25 points 
per cell edge (A = 0.15, 0.26, 0.29 A, respectively, 233 
grid points in the ellipsoid of 2.41 A 3) we obtain a 
numerical accuracy of 0.001e (calculated with p). For 
fine grids, the calculations with p and/5 produce nearly 
identical results (100 points per cell edge give rise to a 
difference of only 0.0005e). This is expected since the 
factor S1S2S  3 of Coppens & Hamilton (1968) is now 
nearly one. If we make the grid coarser, the charge 
calculated from p increases whereas that from /5 
decreases. Here the different treatment of the subunits 
located at the margin of the peak becomes obvious. 
With p, the negative density outside the peak is 
neglected, whereas with/) it is fully taken into account. 
Since we are only interested in the region with positive 
density, the calculation with /) is less accurate for 
coarse grids, see Table 1 for grids 25 and 10 compared 
to grid 100. Thus, as long as one uses grids with 
subunits of equal size (which cannot be avoided with 
standard Fourier programs), the simpler calculation 
with p is to be preferred. That such a coarse grid of 25 
points per cell edge (a = 3.78, b --= 6.46, c = 7.28/~,) 
will do may be because experimental deformation 
densities do not possess large gradients. With theoreti- 
cal static deformation densities which have more 
pointed peaks, this situation may be different and finer 
grids may be required. The figures in Table 1 also show 
that the exact separation of a peak from its neighbours 
will be, in many cases, the crucial problem and not the 
numerical accuracy. 

Finally, we remark that, as a control, we have also 
calculated the charges with IBM double precision (64 
bits). The deviations from the values given in Table 1 
are at most 0.0004e and thus can be neglected. 
[However, we point out that, with numerical in- 
tegration over larger volumes than ellipsoids around 
peaks, there are deviations from the expected results 
when fine grids and single IBM precision (32 bits) are 
used. Thus, with integration over the full unit cell which 
we performed as a program control, we found only 

Table 1. Results o f  the integration f o r  the C - N  peak  
in p-dicyanobenzene 

The volume of the chosen ellipsoid is 2.41 /~3. 'Grid' denotes the 
number of points per cell edge. M is the number of points in the 
volume ofthe ellipsoid with the respective grid. 

Grid M Q ~om p Q ~om 

100 15058 0.2535 0.2530 
75 6366 0.2537 0.2528 
50 1885 0.2543 0.2522 
25 233 0.2544 0.2463 
10 12 0.2721 0.1909 

63.5e instead of the expected 66e when grid 100 was 
used. With double precision these losses did not occur 
and the 66e were found accurately to six decimal 
places.] 

The proposed method indicates that peak inte- 
gration can be performed without an essential re- 
organization of a standard Fourier program and with 
little computing time, and thus can be routinely 
performed in the study of deformation densities. 
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